In silico prediction of major drug clearance pathways by support vector machines with feature-selected descriptors.
نویسندگان
چکیده
We have previously established an in silico classification method ("CPathPred") to predict the major clearance pathways of drugs based on an empirical decision with only four physicochemical descriptors-charge, molecular weight, octanol-water distribution coefficient, and protein unbound fraction in plasma-using a rectangular method. In this study, we attempted to improve the prediction performance of the method by introducing a support vector machine (SVM) and increasing the number of descriptors. The data set consisted of 141 approved drugs whose major clearance pathways were classified into metabolism by CYP3A4, CYP2C9, or CYP2D6; organic anion transporting polypeptide-mediated hepatic uptake; or renal excretion. With the same four default descriptors as used in CPathPred, the SVM-based predictor (named "default descriptor SVM") resulted in higher prediction performance compared with a rectangular-based predictor judged by 10-fold cross-validation. Two SVM-based predictors were also established by adding some descriptors as follows: 1) 881 descriptors predicted in silico from the chemical structures of drugs in addition to 4 default descriptors ("885 descriptor SVM"); and 2) selected descriptors extracted by a feature selection based on a greedy algorithm with default descriptors ("feature selection SVM"). The prediction accuracies of the rectangular-based predictor, default descriptor SVM, 885 descriptor SVM, and feature selection SVM were 0.49, 0.60, 0.72, and 0.91, respectively, and the overall precision values for these four methods were 0.72, 0.77, 0.86, and 0.98, respectively. In conclusion, we successfully constructed SVM-based predictors with limited numbers of descriptors to classify the major clearance pathways of drugs in humans with high prediction performance.
منابع مشابه
Dmd057893 1811..1819
We have previously established an in silico classification method (“CPathPred”) to predict the major clearance pathways of drugs based on an empirical decision with only four physicochemical descriptors—charge, molecular weight, octanol-water distribution coefficient, and protein unbound fraction in plasma—using a rectangular method. In this study, we attempted to improve the prediction perform...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملA prediction distribution of atmospheric pollutants using support vector machines, discriminant analysis and mapping tools (Case study: Tunisia)
Monitoring and controlling air quality parameters form an important subject of atmospheric and environmental research today due to the health impacts caused by the different pollutants present in the urban areas. The support vector machine (SVM), as a supervised learning analysis method, is considered an effective statistical tool for the prediction and analysis of air quality. The work present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 42 11 شماره
صفحات -
تاریخ انتشار 2014